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Abstract

In this note, we prove a theorem on component factors. For a set of connected
graphs H, a spanning subgraph H of a graph G is said to be an H-factor if every
component of H is isomorphic to some member of H. Amahashi and Kano [Discrete
Math. 42 (1982), 1–6] have proved that a graph G which satisfies i(G−S) ≤ m|S| for
every S ⊂ V (G) has a {K1,l : 1 ≤ l ≤ m}-factor, where i(G) is the number of isolated
vertices in G. Here we exclude small stars from the set and prove that a graph G

which satisfies i(G − S) ≤ 1
m |S| for every S ⊂ V (G) has a {K1,l : m ≤ l ≤ 2m}-

factor.

keywords : star, factor, isolated vertex, component

1 Introduction

A spanning subgraph of a graph is called a factor. In particular, for a positive integer
k, a k-factor of a graph G is a k-regular spanning subgraph of G. Thus, a 1-factor
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coincides with a perfect matching. The notion of a k-factor is generalized into a (g, f)-
factor, which is defined as a spanning subgraph H that satisfies g(v) ≤ degH v ≤ f(v)
for every v ∈ V (H) = V (G), where degH x is the degree of x in H, and g and f are
integer-valued functions defined on V (G). Since all these notions look at the degrees
of vertices, they are often referred as “degree factors”. The degree factors have been
studied actively over the years.

On the other hand, when we focus on components of a factor, we are led to the
notion of “component factors”. Let H be a set of connected graphs. Then a spanning
subgraph H of a graph G is called an H-factor if each component of H is isomorphic
to some member of H. In particular, if every component of H is a star, H is called a
star-factor. According to these definitions, a 1-factor is a {K2}-factor, which is also a
star-factor with an additional condition that each component has order two.

In [1], Amahashi and Kano proved the following theorem. For a graph G, let i(G)
denote the number of isolated vertices in G.

Theorem A ([1]) Let m be an integer with m ≥ 2. If a graph G satisfies i(G − S) ≤
m|S| for every S ⊂ V (G), then G has a {K1,k : 1 ≤ k ≤ m}-factor.

Though the above theorem is a result on component factors, it can be deduced from
the theory of degree factors. If g and f are constant functions taking values a and b,
respectively, a (g, f)-factor is also called an [a, b]-factor. Clearly, a {K1,l : 1 ≤ l ≤ m}-
factor is a [1, m]-factor. On the other hand, it is easy to see that a [1,m]-factor with
the smallest number of edges is a {K1,l : 1 ≤ l ≤ m}-factor. Therefore, the existence
of a {K1,l : 1 ≤ l ≤ m}-factor is equivalent with the existence of a [1,m]-factor, and
Theorem A can be deduced from Lovász’s (g, f)-Factor Theorem [4].

In [3], Kano, Lu and Yu have proved the following theorem.

Theorem B ([3]) If a graph G satisfies i(G − S) ≤ 1
2 |S| for every S ⊂ V (G), then G

has a {K1,2,K1,3,K5}-factor.

The combination of K1,2, K1,3 and K5 looks strange, and we do not know why this
apparently peculiar combination admits the above simple sufficient condition based on
the number of isolated vertices. But we observe that under the same assumption, Theo-
rem A also guarantees the existence of a {K1,2,K1,3,K1,4}-factor. We also observe that
since K1,1 is excluded from the set, the results on degree factors are unlikely to deduce
Theorem A.

The purpose of this note is to prove the following theorem, which is a generalization
of the above observation.

Theorem 1 Let m be a positive integer and let G be a graph. If i(G−S) ≤ 1
m |S| holds

for every S ⊂ V (G), then G has a {K1,l : m ≤ l ≤ 2m}-factor.

In the next section, we prove the above theorem and discuss its sharpness. In Sec-
tion 3, we make some concluding remarks.
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For standard graph-theoretic notation not explained in this paper, we refer the reader
to [2]. For a graph G, let α(G) and δ(G) denote the independence number and the
minimum degree of G, respectively. For x ∈ V (G), the neighborhood of x in G is
denoted by NG(x). For S ⊂ V (G), we define NG(S) by NG(S) =

∪
v∈S NG(v), and let

G[S] denote the subgraph of G induced by S.

2 Proof of Theorem 1

In this section, we prove Theorem 1. The proof strategy is similar to the proof of
Theorem B in [3].

We use the following corollary of Hall’s Theorem, which was also used without a
proof in [3]. We give a proof in order to make this note self-contained.

Theorem C ([3]) Let G be a bipartite graph with partite sets X and Y , and let f be a

function from X to the set of positive integers. If |NG(S)| ≥
∑

v∈S f(v) holds for every

S ⊂ X, then G has a subgraph H such that X ⊂ V (H), degH u = f(u) for each u ∈ X

and degH v ≤ 1 for each v ∈ Y . In particular, if G further satisfies
∑

v∈X f(v) = |Y |,
then G has a star-factor H with degH u = f(u) for each u ∈ X and degH v = 1 for each

v ∈ Y .

Proof. For each u ∈ X, we prepare f(u) new vertices u1, u2, . . . , uf(u), and let
Xf = {ui : u ∈ X, 1 ≤ i ≤ f(u)}. Then join ui and v by an edge if uv ∈ E(G). Let
Gf be the resulting bipartite graph with partite sets Xf and Y . Then G has a required
subgraph if and only if Gf has a matching which saturates all the vertices of Xf , and
the conclusion follows from Hall’s Theorem. ¤

Now we prove Theorem 1.

Proof of Theorem 1. Let

β = min
{

1
m
|X| − i(G − X) : X ⊂ V (G), i(G − X) ≥ 1

}
.

Note β ≥ 0 by the assumption.
We proceed by induction on |G|. First, we claim the following.

Claim 1 |G| ≥ (m + 1)α(G) + mβ

Proof. Let A be a largest independent set of G and let X = V (G)−A. Then i(G−X) =
|A| = α(G) ≥ 1, and hence β ≤ 1

m |X| − i(G − X) = 1
m |X| − α(G), which implies

|X| ≥ m(α(G) + β). Since |X| = |G| − α, we obtain the required inequality. ¤

By Claim 1, |G| ≥ m + 1. Suppose m + 1 ≤ |G| ≤ 2m + 1. If G has a pair of
non-adjacent vertices x and y, then α(G) ≥ 2 and hence |G| ≥ 2(m + 1) by Claim 1.
This is a contradiction. Therefore, G is complete and hence has a spanning subgraph
which is isomorphic to K1,|G|−1. Since m + 1 ≤ |G| ≤ 2m + 1, the theorem follows in
this case.
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Now suppose |G| ≥ 2m+2. Let S be a set of vertices in G which satisfies i(G−S) ≥ 1
and 1

m |S| − i(G − S) = β.

Claim 2 δ(G) ≥ m(β + 1).

Proof. Let x be a vertex of G with degG x = δ(G). Then i(G − NG(x)) ≥ 1 and hence
1
m |NG(x)| − i(G − NG(x)) ≥ β, or |NG(x)| ≥ m

(
β + i(G − NG(x))

)
≥ m(β + 1), which

implies δ(G) ≥ m(β + 1). ¤

Claim 3 Every component D of G − S with |D| ≥ 2 has a {K1,l : m ≤ l ≤ 2m}-factor.

Proof. Let T ⊂ V (D). Note i(G − (S ∪ T )) = i(G − S) + i(D − T ) ≥ 1. Therefore,
1
m |S ∪ T | − i(G − (S ∪ T )) ≥ β, or β ≤ 1

m |S| + 1
m |T | − i(G − S) − i(D − T ). Since

1
m |S| − i(G − S) = β, we have i(D − T ) ≤ 1

m |T |. Then D has a {K1,l : m ≤ l ≤ 2m}-
factor by the induction hypothesis. ¤

Let U be the set of isolated vertices in G− S and let D1, . . . , Dt be the components
of G − S of order at least two.

Claim 4 For every Y ⊂ U with Y ̸= ∅, |NG(Y )| ≥ m|Y | + mβ, and |NG(U)| =
m|U | + mβ.

Proof. Since i(G−NG(Y )) ≥ |Y | ≥ 1, 1
m |NG(Y )|− i(G−NG(Y )) ≥ β. Then |NG(Y )| ≥

m
(
β + i(G − NG(Y ))

)
≥ m(β + |Y |).

If NG(U) ̸= S, then there exists a vertex s ∈ S with NG(s)∩U = ∅. Let S′ = S−{s}.
Then i(G − S′) ≥ |U | = i(G − S) ≥ 1 and 1

m |S′| − i(G − S′) ≤ 1
m |S| − 1

m − i(G −
S) = β − 1

m < β. This contradicts the definition of β. Therefore, NG(U) = S and
1
m |S| − i(G − S) = 1

m |NG(U)| − |U | = β, which implies |NG(U)| = m(β + |U |). ¤

Suppose β > 1. Then since mβ is an integer, β ≥ 1+ 1
m = m+1

m . Let x ∈ V (G). Since
δ(G) ≥ m(β + 1) ≥ 2m + 1 by Claim 2, we can take m distinct neighbors y1, y2, . . . , ym

of x in G. Let G′ = G − {x, y1, . . . , ym}. Let T ⊂ V (G′). If i(G′ − T ) = i(G − (T ∪
{x, y1, . . . , ym})) ≥ 1, then

1
m
|T ∪ {x, y1, . . . , ym}| − i(G − (T ∪ {x, y1, . . . , ym})) ≥ β,

which implies 1
m |T |+ m+1

m − i(G′−T ) ≥ β ≥ m+1
m , or i(G′−T ) ≤ 1

m |T |. If i(G′−T ) = 0,
then i(G′ − T ) ≤ 1

m |T | trivially holds. Thus, by the induction hypothesis, G′ has
a {K1,l : m ≤ l ≤ 2m}-factor F ′. Since G[{x, y1, . . . , ym}] has a spanning subgraph
isomorphic to K1,m, this subgraph and F ′ form a {K1,l : m ≤ l ≤ 2m}-factor of G.
Therefore, we may assume β ≤ 1.

Since i(G − S) ≥ 1, U ̸= ∅. Take u0 ∈ U . Define f : U → Z by

f(u) =

m + mβ if u = u0

m if u ̸= u0
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Then
∑

u∈U f(u) = m|U | + mβ = |NG(U)| by Claim 4. Again by Claim 4, for Y ⊂ U

with Y ̸= ∅,
∑

u∈Y f(u) ≤ m|Y | + mβ ≤ |NG(Y )|. Therefore, by Theorem C, G[U ∪ S]
has a {K1,m, K1,m+mβ}-factor. Note that since β ≤ 1, m + mβ ≤ 2m. Then this factor
and a {K1,l : m ≤ l ≤ 2m}-factor in each Di (1 ≤ i ≤ t) form a {K1,l : m ≤ l ≤ 2m}-
factor of G. ¤

Next, we prove that Theorem 1 is best-possible if m ≥ 2. Note that i(G−S) > 1
m |S|

is equivalent to i(G − S) ≥ 1
m |S| + 1

m .

Theorem 2 Let m be an integer with m ≥ 2. Then there exist infinitely many graphs

G such that

(1) i(G − S) ≤ 1
m |S| + 1

m holds for every S ⊂ V (G), but

(2) G does not have a {K1,l : m ≤ l ≤ 2m}-factor.

Proof. Let r be an integer with r ≥ 2. Let H1, H2, . . . ,Hr be disjoint copies of Km+1,
and let H0 be a copy of Km. Choose one vertex xi from each Hi (0 ≤ i ≤ r), and join
x0 and xj by an edge for each j with 1 ≤ j ≤ r. Let Gr be the resulting graph.

Assume Gr has a {K1,l : m ≤ l ≤ 2m}-factor F . Since |H0| = m, a component F0 of
F which intersects H0 also contains a vertex v in Hi0 for some i0, 1 ≤ i0 ≤ r. This is
possible only if x0 is the center of F0. Then Hi0 − v contains a component of F which
is different from F0. However, this is impossible since |Hi0 − v| = m.

Next, we prove that Gr satisfies i(Gr − S) ≤ 1
m |S| + 1

m for each S ⊂ V (Gr). Let S0

be a set of vertices of Gr with 1
m |S0|−i(Gr−S0) = min

{
1
m |S| − i(Gr − S) : S ⊂ V (G)

}
.

If V (Hi) ∩ S0 ̸= ∅ and |V (Hi) − S0| ≥ 2 for some i with 0 ≤ i ≤ r, take x ∈ V (Hi) −(
S0 ∪ {xi}

)
and let S′ = S0 ∪ (V (Hi) − {x}). Then i(Gr − S′) = i(Gr − S0) + 1

and |S′| ≤ |S0| + m − 1, and hence 1
m |S′| − i(Gr − S′) ≤ 1

m |S0| − i(Gr − S0) − 1
m .

This contradicts the choice of S0. On the other hand, if V (Hi) ⊂ S0 for some i with
0 ≤ i ≤ r, then since |Hi| ≥ m ≥ 2, we can take x ∈ V (Hi) − {xi}. Let S′′ =
S0 − {x}. Then i(Gr − S′′) = i(Gr − S0) + 1 > i(Gr − S0) and |S′′| = |S0| − 1 < |S0|.
Therefore, 1

m |S′′| − i(Gr − S′′) < 1
m |S0| − i(Gr − S0). This again contradicts the choice

of S0. Therefore, we may assume that for each i, 0 ≤ i ≤ r, either V (Hi) ∩ S0 = ∅ or
|V (Hi) − S0| = 1. By symmetry of H1, . . . ,Hr, we may assume |V (Hi) − S0| = 1 for
1 ≤ i ≤ s and V (Hi) ∩ S0 = ∅ for s + 1 ≤ i ≤ r.

If x0 /∈ S0, take x ∈ V (H0) − {x0} and let S2 =
(
S ∪ V (H0)

)
− {x}. Then either

|S2| = |S0| or |S2| = |S0| + m − 1, and i(Gr − S2) ≥ i(Gr − S0) + 1. Therefore,
1
m |S2| − i(Gr − S2) ≤ 1

m − i(Gr − S0) − 1
m , which again contradicts the choice of S0.

Therefore, x0 ∈ S0 and |V (H0) ∩ S0| = 1.
Now we have |S0| = sm+m−1 and i(Gr−S0) = s+1, and hence 1

m |S0|−i(Gr−S0) =
− 1

m . This implies i(Gr − S) ≤ 1
m |S| + 1

m for each S ⊂ V (G). ¤

Theorem 1 is not sharp for m = 1. Theorem 1 says that a graph G with i(G−S) ≤ |S|
for every S ⊂ V (G) has a {K1,1,K1,2}-factor. But according to Theorem A, if G satisfies
i(G − S) ≤ 2|S| for every S ⊂ V (G), then G already has a {K1,1,K1,2}-factor.
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3 Concluding Remarks

In this note, we have proved a sufficient condition for a graph to have a star-factor in
which the order of each component falls in a certain interval. It is described in terms of
the number of isolated vertices in vertex-deleted subgraphs.

This note only deals with a star-factor in which the order of each component falls in
the interval [m + 1, 2m + 1]. Though it looks special, it is actually a natural interval in
the following sense.

Suppose we try to obtain a sufficient condition for a graph to have a star-factor in
which the order of each component falls in the interval [m + 1, 2m] instead of [m +
1, 2m+1]. Since 2m+1 is not expressed as a sum of integers in {m+1,m+2, . . . , 2m},
K2m+1 does not have a {K1,l : m ≤ l ≤ 2m − 1}-factor. Therefore, if we try to obtain
a sufficient condition for a graph to have a {K1,l : m ≤ l ≤ 2m − 1}-factor, then this
condition fails to hold for K2m+1. Such a condition would be much stronger than the
one we have obtained in this note.

Comparing Theorem 1 with Theorem B, we may conjecture that a graph satisfy-
ing the same assumption as in Theorem 1 actually has a ({K1,l : m ≤ l ≤ 2m − 1}) ∪
{K2m+1})-factor. However, until we obtain more insight into the meaning of this ap-
parently peculiar combination, we do not intend to pursue this direction.
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