# Star-Factors with Large Components 

Mikio Kano<br>Department of Computer and Information Sciences<br>Ibaraki University<br>Nakanarusawa 4-12-1 Hitachi<br>Ibaraki 316-8511<br>JAPAN<br>E-mail: kano@mx.ibaraki.ac.jp<br>and<br>Akira Saito*<br>Department of Computer Science<br>Nihon University<br>Sakurajosui 3-25-40<br>Setagaya-Ku, Tokyo 156-8550<br>JAPAN<br>E-mail: asaito@chs.nihon-u.ac.jp


#### Abstract

In this note, we prove a theorem on component factors. For a set of connected graphs $\mathcal{H}$, a spanning subgraph $H$ of a graph $G$ is said to be an $\mathcal{H}$-factor if every component of $H$ is isomorphic to some member of $\mathcal{H}$. Amahashi and Kano [Discrete Math. 42 (1982), 1-6] have proved that a graph $G$ which satisfies $i(G-S) \leq m|S|$ for every $S \subset V(G)$ has a $\left\{K_{1, l}: 1 \leq l \leq m\right\}$-factor, where $i(G)$ is the number of isolated vertices in $G$. Here we exclude small stars from the set and prove that a graph $G$ which satisfies $i(G-S) \leq \frac{1}{m}|S|$ for every $S \subset V(G)$ has a $\left\{K_{1, l}: m \leq l \leq 2 m\right\}$ factor.


keywords : star, factor, isolated vertex, component

## 1 Introduction

A spanning subgraph of a graph is called a factor. In particular, for a positive integer $k$, a $k$-factor of a graph $G$ is a $k$-regular spanning subgraph of $G$. Thus, a 1-factor

[^0]coincides with a perfect matching. The notion of a $k$-factor is generalized into a $(g, f)$ factor, which is defined as a spanning subgraph $H$ that satisfies $g(v) \leq \operatorname{deg}_{H} v \leq f(v)$ for every $v \in V(H)=V(G)$, where $\operatorname{deg}_{H} x$ is the degree of $x$ in $H$, and $g$ and $f$ are integer-valued functions defined on $V(G)$. Since all these notions look at the degrees of vertices, they are often referred as "degree factors". The degree factors have been studied actively over the years.

On the other hand, when we focus on components of a factor, we are led to the notion of "component factors". Let $\mathcal{H}$ be a set of connected graphs. Then a spanning subgraph $H$ of a graph $G$ is called an $\mathcal{H}$-factor if each component of $H$ is isomorphic to some member of $\mathcal{H}$. In particular, if every component of $\mathcal{H}$ is a star, $H$ is called a star-factor. According to these definitions, a 1 -factor is a $\left\{K_{2}\right\}$-factor, which is also a star-factor with an additional condition that each component has order two.

In [1], Amahashi and Kano proved the following theorem. For a graph $G$, let $i(G)$ denote the number of isolated vertices in $G$.

Theorem A ([1]) Let $m$ be an integer with $m \geq 2$. If a graph $G$ satisfies $i(G-S) \leq$ $m|S|$ for every $S \subset V(G)$, then $G$ has a $\left\{K_{1, k}: 1 \leq k \leq m\right\}$-factor.

Though the above theorem is a result on component factors, it can be deduced from the theory of degree factors. If $g$ and $f$ are constant functions taking values $a$ and $b$, respectively, a $(g, f)$-factor is also called an $[a, b]$-factor. Clearly, a $\left\{K_{1, l}: 1 \leq l \leq m\right\}$ factor is a $[1, m]$-factor. On the other hand, it is easy to see that a $[1, m]$-factor with the smallest number of edges is a $\left\{K_{1, l}: 1 \leq l \leq m\right\}$-factor. Therefore, the existence of a $\left\{K_{1, l}: 1 \leq l \leq m\right\}$-factor is equivalent with the existence of a [ $1, m$ ]-factor, and Theorem A can be deduced from Lovász's $(g, f)$-Factor Theorem [4].

In [3], Kano, Lu and Yu have proved the following theorem.
Theorem B ([3]) If a graph $G$ satisfies $i(G-S) \leq \frac{1}{2}|S|$ for every $S \subset V(G)$, then $G$ has a $\left\{K_{1,2}, K_{1,3}, K_{5}\right\}$-factor.

The combination of $K_{1,2}, K_{1,3}$ and $K_{5}$ looks strange, and we do not know why this apparently peculiar combination admits the above simple sufficient condition based on the number of isolated vertices. But we observe that under the same assumption, Theorem A also guarantees the existence of a $\left\{K_{1,2}, K_{1,3}, K_{1,4}\right\}$-factor. We also observe that since $K_{1,1}$ is excluded from the set, the results on degree factors are unlikely to deduce Theorem A.

The purpose of this note is to prove the following theorem, which is a generalization of the above observation.

Theorem 1 Let $m$ be a positive integer and let $G$ be a graph. If $i(G-S) \leq \frac{1}{m}|S|$ holds for every $S \subset V(G)$, then $G$ has a $\left\{K_{1, l}: m \leq l \leq 2 m\right\}$-factor.

In the next section, we prove the above theorem and discuss its sharpness. In Section 3 , we make some concluding remarks.

For standard graph-theoretic notation not explained in this paper, we refer the reader to [2]. For a graph $G$, let $\alpha(G)$ and $\delta(G)$ denote the independence number and the minimum degree of $G$, respectively. For $x \in V(G)$, the neighborhood of $x$ in $G$ is denoted by $N_{G}(x)$. For $S \subset V(G)$, we define $N_{G}(S)$ by $N_{G}(S)=\bigcup_{v \in S} N_{G}(v)$, and let $G[S]$ denote the subgraph of $G$ induced by $S$.

## 2 Proof of Theorem 1

In this section, we prove Theorem 1. The proof strategy is similar to the proof of Theorem B in [3].

We use the following corollary of Hall's Theorem, which was also used without a proof in [3]. We give a proof in order to make this note self-contained.

Theorem C ([3]) Let $G$ be a bipartite graph with partite sets $X$ and $Y$, and let $f$ be a function from $X$ to the set of positive integers. If $\left|N_{G}(S)\right| \geq \sum_{v \in S} f(v)$ holds for every $S \subset X$, then $G$ has a subgraph $H$ such that $X \subset V(H), \operatorname{deg}_{H} u=f(u)$ for each $u \in X$ and $\operatorname{deg}_{H} v \leq 1$ for each $v \in Y$. In particular, if $G$ further satisfies $\sum_{v \in X} f(v)=|Y|$, then $G$ has a star-factor $H$ with $\operatorname{deg}_{H} u=f(u)$ for each $u \in X$ and $\operatorname{deg}_{H} v=1$ for each $v \in Y$.

Proof. For each $u \in X$, we prepare $f(u)$ new vertices $u_{1}, u_{2}, \ldots, u_{f(u)}$, and let $X^{f}=\left\{u_{i}: u \in X, 1 \leq i \leq f(u)\right\}$. Then join $u_{i}$ and $v$ by an edge if $u v \in E(G)$. Let $G^{f}$ be the resulting bipartite graph with partite sets $X^{f}$ and $Y$. Then $G$ has a required subgraph if and only if $G^{f}$ has a matching which saturates all the vertices of $X^{f}$, and the conclusion follows from Hall's Theorem.

Now we prove Theorem 1.
Proof of Theorem 1. Let

$$
\beta=\min \left\{\frac{1}{m}|X|-i(G-X): X \subset V(G), i(G-X) \geq 1\right\} .
$$

Note $\beta \geq 0$ by the assumption.
We proceed by induction on $|G|$. First, we claim the following.
Claim $1|G| \geq(m+1) \alpha(G)+m \beta$
Proof. Let $A$ be a largest independent set of $G$ and let $X=V(G)-A$. Then $i(G-X)=$ $|A|=\alpha(G) \geq 1$, and hence $\beta \leq \frac{1}{m}|X|-i(G-X)=\frac{1}{m}|X|-\alpha(G)$, which implies $|X| \geq m(\alpha(G)+\beta)$. Since $|X|=|G|-\alpha$, we obtain the required inequality.

By Claim $1,|G| \geq m+1$. Suppose $m+1 \leq|G| \leq 2 m+1$. If $G$ has a pair of non-adjacent vertices $x$ and $y$, then $\alpha(G) \geq 2$ and hence $|G| \geq 2(m+1)$ by Claim 1 . This is a contradiction. Therefore, $G$ is complete and hence has a spanning subgraph which is isomorphic to $K_{1,|G|-1}$. Since $m+1 \leq|G| \leq 2 m+1$, the theorem follows in this case.

Now suppose $|G| \geq 2 m+2$. Let $S$ be a set of vertices in $G$ which satisfies $i(G-S) \geq 1$ and $\frac{1}{m}|S|-i(G-S)=\beta$.

Claim $2 \delta(G) \geq m(\beta+1)$.
Proof. Let $x$ be a vertex of $G$ with $\operatorname{deg}_{G} x=\delta(G)$. Then $i\left(G-N_{G}(x)\right) \geq 1$ and hence $\frac{1}{m}\left|N_{G}(x)\right|-i\left(G-N_{G}(x)\right) \geq \beta$, or $\left|N_{G}(x)\right| \geq m\left(\beta+i\left(G-N_{G}(x)\right)\right) \geq m(\beta+1)$, which implies $\delta(G) \geq m(\beta+1)$.

Claim 3 Every component $D$ of $G-S$ with $|D| \geq 2$ has a $\left\{K_{1, l}: m \leq l \leq 2 m\right\}$-factor.
Proof. Let $T \subset V(D)$. Note $i(G-(S \cup T))=i(G-S)+i(D-T) \geq 1$. Therefore, $\frac{1}{m}|S \cup T|-i(G-(S \cup T)) \geq \beta$, or $\beta \leq \frac{1}{m}|S|+\frac{1}{m}|T|-i(G-S)-i(D-T)$. Since $\frac{1}{m}|S|-i(G-S)=\beta$, we have $i(D-T) \leq \frac{1}{m}|T|$. Then $D$ has a $\left\{K_{1, l}: m \leq l \leq 2 m\right\}$ factor by the induction hypothesis.

Let $U$ be the set of isolated vertices in $G-S$ and let $D_{1}, \ldots, D_{t}$ be the components of $G-S$ of order at least two.

Claim 4 For every $Y \subset U$ with $Y \neq \emptyset,\left|N_{G}(Y)\right| \geq m|Y|+m \beta$, and $\left|N_{G}(U)\right|=$ $m|U|+m \beta$.

Proof. Since $i\left(G-N_{G}(Y)\right) \geq|Y| \geq 1, \frac{1}{m}\left|N_{G}(Y)\right|-i\left(G-N_{G}(Y)\right) \geq \beta$. Then $\left|N_{G}(Y)\right| \geq$ $m\left(\beta+i\left(G-N_{G}(Y)\right)\right) \geq m(\beta+|Y|)$.

If $N_{G}(U) \neq S$, then there exists a vertex $s \in S$ with $N_{G}(s) \cap U=\emptyset$. Let $S^{\prime}=S-\{s\}$. Then $i\left(G-S^{\prime}\right) \geq|U|=i(G-S) \geq 1$ and $\frac{1}{m}\left|S^{\prime}\right|-i\left(G-S^{\prime}\right) \leq \frac{1}{m}|S|-\frac{1}{m}-i(G-$ $S)=\beta-\frac{1}{m}<\beta$. This contradicts the definition of $\beta$. Therefore, $N_{G}(U)=S$ and $\frac{1}{m}|S|-i(G-S)=\frac{1}{m}\left|N_{G}(U)\right|-|U|=\beta$, which implies $\left|N_{G}(U)\right|=m(\beta+|U|)$.

Suppose $\beta>1$. Then since $m \beta$ is an integer, $\beta \geq 1+\frac{1}{m}=\frac{m+1}{m}$. Let $x \in V(G)$. Since $\delta(G) \geq m(\beta+1) \geq 2 m+1$ by Claim 2, we can take $m$ distinct neighbors $y_{1}, y_{2}, \ldots, y_{m}$ of $x$ in $G$. Let $G^{\prime}=G-\left\{x, y_{1}, \ldots, y_{m}\right\}$. Let $T \subset V\left(G^{\prime}\right)$. If $i\left(G^{\prime}-T\right)=i(G-(T \cup$ $\left.\left.\left\{x, y_{1}, \ldots, y_{m}\right\}\right)\right) \geq 1$, then

$$
\frac{1}{m}\left|T \cup\left\{x, y_{1}, \ldots, y_{m}\right\}\right|-i\left(G-\left(T \cup\left\{x, y_{1}, \ldots, y_{m}\right\}\right)\right) \geq \beta
$$

which implies $\frac{1}{m}|T|+\frac{m+1}{m}-i\left(G^{\prime}-T\right) \geq \beta \geq \frac{m+1}{m}$, or $i\left(G^{\prime}-T\right) \leq \frac{1}{m}|T|$. If $i\left(G^{\prime}-T\right)=0$, then $i\left(G^{\prime}-T\right) \leq \frac{1}{m}|T|$ trivially holds. Thus, by the induction hypothesis, $G^{\prime}$ has a $\left\{K_{1, l}: m \leq l \leq 2 m\right\}$-factor $F^{\prime}$. Since $G\left[\left\{x, y_{1}, \ldots, y_{m}\right\}\right]$ has a spanning subgraph isomorphic to $K_{1, m}$, this subgraph and $F^{\prime}$ form a $\left\{K_{1, l}: m \leq l \leq 2 m\right\}$-factor of $G$. Therefore, we may assume $\beta \leq 1$.

Since $i(G-S) \geq 1, U \neq \emptyset$. Take $u_{0} \in U$. Define $f: U \rightarrow \boldsymbol{Z}$ by

$$
f(u)= \begin{cases}m+m \beta & \text { if } u=u_{0} \\ m & \text { if } u \neq u_{0}\end{cases}
$$

Then $\sum_{u \in U} f(u)=m|U|+m \beta=\left|N_{G}(U)\right|$ by Claim 4. Again by Claim 4, for $Y \subset U$ with $Y \neq \emptyset, \sum_{u \in Y} f(u) \leq m|Y|+m \beta \leq\left|N_{G}(Y)\right|$. Therefore, by Theorem C, $G[U \cup S]$ has a $\left\{K_{1, m}, K_{1, m+m \beta}\right\}$-factor. Note that since $\beta \leq 1, m+m \beta \leq 2 m$. Then this factor and a $\left\{K_{1, l}: m \leq l \leq 2 m\right\}$-factor in each $D_{i}(1 \leq i \leq t)$ form a $\left\{K_{1, l}: m \leq l \leq 2 m\right\}$ factor of $G$.

Next, we prove that Theorem 1 is best-possible if $m \geq 2$. Note that $i(G-S)>\frac{1}{m}|S|$ is equivalent to $i(G-S) \geq \frac{1}{m}|S|+\frac{1}{m}$.

Theorem 2 Let $m$ be an integer with $m \geq 2$. Then there exist infinitely many graphs $G$ such that
(1) $i(G-S) \leq \frac{1}{m}|S|+\frac{1}{m}$ holds for every $S \subset V(G)$, but
(2) $G$ does not have a $\left\{K_{1, l}: m \leq l \leq 2 m\right\}$-factor.

Proof. Let $r$ be an integer with $r \geq 2$. Let $H_{1}, H_{2}, \ldots, H_{r}$ be disjoint copies of $K_{m+1}$, and let $H_{0}$ be a copy of $K_{m}$. Choose one vertex $x_{i}$ from each $H_{i}(0 \leq i \leq r)$, and join $x_{0}$ and $x_{j}$ by an edge for each $j$ with $1 \leq j \leq r$. Let $G_{r}$ be the resulting graph.

Assume $G_{r}$ has a $\left\{K_{1, l}: m \leq l \leq 2 m\right\}$-factor $F$. Since $\left|H_{0}\right|=m$, a component $F_{0}$ of $F$ which intersects $H_{0}$ also contains a vertex $v$ in $H_{i_{0}}$ for some $i_{0}, 1 \leq i_{0} \leq r$. This is possible only if $x_{0}$ is the center of $F_{0}$. Then $H_{i_{0}}-v$ contains a component of $F$ which is different from $F_{0}$. However, this is impossible since $\left|H_{i_{0}}-v\right|=m$.

Next, we prove that $G_{r}$ satisfies $i\left(G_{r}-S\right) \leq \frac{1}{m}|S|+\frac{1}{m}$ for each $S \subset V\left(G_{r}\right)$. Let $S_{0}$ be a set of vertices of $G_{r}$ with $\frac{1}{m}\left|S_{0}\right|-i\left(G_{r}-S_{0}\right)=\min \left\{\frac{1}{m}|S|-i\left(G_{r}-S\right): S \subset V(G)\right\}$. If $V\left(H_{i}\right) \cap S_{0} \neq \emptyset$ and $\left|V\left(H_{i}\right)-S_{0}\right| \geq 2$ for some $i$ with $0 \leq i \leq r$, take $x \in V\left(H_{i}\right)-$ $\left(S_{0} \cup\left\{x_{i}\right\}\right)$ and let $S^{\prime}=S_{0} \cup\left(V\left(H_{i}\right)-\{x\}\right)$. Then $i\left(G_{r}-S^{\prime}\right)=i\left(G_{r}-S_{0}\right)+1$ and $\left|S^{\prime}\right| \leq\left|S_{0}\right|+m-1$, and hence $\frac{1}{m}\left|S^{\prime}\right|-i\left(G_{r}-S^{\prime}\right) \leq \frac{1}{m}\left|S_{0}\right|-i\left(G_{r}-S_{0}\right)-\frac{1}{m}$. This contradicts the choice of $S_{0}$. On the other hand, if $V\left(H_{i}\right) \subset S_{0}$ for some $i$ with $0 \leq i \leq r$, then since $\left|H_{i}\right| \geq m \geq 2$, we can take $x \in V\left(H_{i}\right)-\left\{x_{i}\right\}$. Let $S^{\prime \prime}=$ $S_{0}-\{x\}$. Then $i\left(G_{r}-S^{\prime \prime}\right)=i\left(G_{r}-S_{0}\right)+1>i\left(G_{r}-S_{0}\right)$ and $\left|S^{\prime \prime}\right|=\left|S_{0}\right|-1<\left|S_{0}\right|$. Therefore, $\frac{1}{m}\left|S^{\prime \prime}\right|-i\left(G_{r}-S^{\prime \prime}\right)<\frac{1}{m}\left|S_{0}\right|-i\left(G_{r}-S_{0}\right)$. This again contradicts the choice of $S_{0}$. Therefore, we may assume that for each $i, 0 \leq i \leq r$, either $V\left(H_{i}\right) \cap S_{0}=\emptyset$ or $\left|V\left(H_{i}\right)-S_{0}\right|=1$. By symmetry of $H_{1}, \ldots, H_{r}$, we may assume $\left|V\left(H_{i}\right)-S_{0}\right|=1$ for $1 \leq i \leq s$ and $V\left(H_{i}\right) \cap S_{0}=\emptyset$ for $s+1 \leq i \leq r$.

If $x_{0} \notin S_{0}$, take $x \in V\left(H_{0}\right)-\left\{x_{0}\right\}$ and let $S_{2}=\left(S \cup V\left(H_{0}\right)\right)-\{x\}$. Then either $\left|S_{2}\right|=\left|S_{0}\right|$ or $\left|S_{2}\right|=\left|S_{0}\right|+m-1$, and $i\left(G_{r}-S_{2}\right) \geq i\left(G_{r}-S_{0}\right)+1$. Therefore, $\frac{1}{m}\left|S_{2}\right|-i\left(G_{r}-S_{2}\right) \leq \frac{1}{m}-i\left(G_{r}-S_{0}\right)-\frac{1}{m}$, which again contradicts the choice of $S_{0}$. Therefore, $x_{0} \in S_{0}$ and $\left|V\left(H_{0}\right) \cap S_{0}\right|=1$.

Now we have $\left|S_{0}\right|=s m+m-1$ and $i\left(G_{r}-S_{0}\right)=s+1$, and hence $\frac{1}{m}\left|S_{0}\right|-i\left(G_{r}-S_{0}\right)=$ $-\frac{1}{m}$. This implies $i\left(G_{r}-S\right) \leq \frac{1}{m}|S|+\frac{1}{m}$ for each $S \subset V(G)$.

Theorem 1 is not sharp for $m=1$. Theorem 1 says that a graph $G$ with $i(G-S) \leq|S|$ for every $S \subset V(G)$ has a $\left\{K_{1,1}, K_{1,2}\right\}$-factor. But according to Theorem A, if $G$ satisfies $i(G-S) \leq 2|S|$ for every $S \subset V(G)$, then $G$ already has a $\left\{K_{1,1}, K_{1,2}\right\}$-factor.

## 3 Concluding Remarks

In this note, we have proved a sufficient condition for a graph to have a star-factor in which the order of each component falls in a certain interval. It is described in terms of the number of isolated vertices in vertex-deleted subgraphs.

This note only deals with a star-factor in which the order of each component falls in the interval $[m+1,2 m+1]$. Though it looks special, it is actually a natural interval in the following sense.

Suppose we try to obtain a sufficient condition for a graph to have a star-factor in which the order of each component falls in the interval $[m+1,2 m]$ instead of $[m+$ $1,2 m+1]$. Since $2 m+1$ is not expressed as a sum of integers in $\{m+1, m+2, \ldots, 2 m\}$, $K_{2 m+1}$ does not have a $\left\{K_{1, l}: m \leq l \leq 2 m-1\right\}$-factor. Therefore, if we try to obtain a sufficient condition for a graph to have a $\left\{K_{1, l}: m \leq l \leq 2 m-1\right\}$-factor, then this condition fails to hold for $K_{2 m+1}$. Such a condition would be much stronger than the one we have obtained in this note.

Comparing Theorem 1 with Theorem B, we may conjecture that a graph satisfying the same assumption as in Theorem 1 actually has a ( $\left\{K_{1, l}: m \leq l \leq 2 m-1\right\}$ ) $\cup$ $\left.\left\{K_{2 m+1}\right\}\right)$-factor. However, until we obtain more insight into the meaning of this apparently peculiar combination, we do not intend to pursue this direction.

## References

[1] A. Amahashi and M. Kano, On factors with given components. Discrete Math. 42 (1982), 1-6.
[2] G. Chartrand and L. Lesniak, Graphs \& Digraphs (4th ed.), Chapman and Hall/CRC, Boca Raton, Florida, U.S.A. (2005).
[3] M. Kano, H. Lu and Q. Yu, Component factors with large components in graphs, Appl. Math. Lett. 23 (2010), 385-389.
[4] L. Lovász, Subgraphs with prescribed valencies, J. Combinatorial Theory 8 (1970), 391-416.


[^0]:    *Partially supported by Japan Society for the Promotion of Science, Grant-in-Aid for Scientific Research (C), 22500018, 2010

